We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Torsional Vibration?

By D.R. Satori
Updated May 17, 2024
Our promise to you
About Mechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At About Mechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Torsional vibration occurs due to unbalance in rotating systems, such as misalignment of a rotating shaft or a weak coupling that allows small-unwanted movements along the axis of rotation. Parts are designed to spin with a constant velocity or, sometimes, required to speed up or slow down. The fewer abrupt or random vibrations a rotating part experiences while in operation, the longer its life. Many torsional components are designed with materials that can withstand long-term torsional damage, also known as torsional fatigue. Without adequate testing under vibrational loading, spinning parts might crack through, failing catastrophically, causing peripheral damage — even killing the machine operator.

Rotating rods, usually part of a power train, such as transmission shafts, camshafts, crankshafts, driveshafts, and spindles experience torsional vibrations as they transmit power from some form of generating device. Such rotating shafts are constructed of ductile materials, such as metals that have greater fracture toughness — resistance to cracking. Metallic rotating parts fail through slow cracking from the surface where the greatest torsional stress is experienced and where the cracks are easiest to identify. Cracks can also grow from rotating couplings, from surface flaws inside the fastener holes. Terminal cracks at failure surfaces grow in an approximate plane perpendicular to the length of the rotating shaft and about the central axis.

A simple example of torsional vibration is a road sign in a steady wind. Mountings and brackets that hold the signs up under normal conditions are not designed to resist rotational motion. In a storm, road signs will whip back and forth in the wind under the influence of torsional vibration. Even some very large signs can be ripped from their moorings, becoming shrapnel to the unwary caught out in a hurricane.

Torsional vibrations can occur with specific resonating geometries of the shaft or when rotational speeds are high, increasing above a certain limiting value. At this point, rotation about the shaft’s axis becomes dynamically unstable and damaging vibrations ensue. These random vibrations, at odds with the normal continuous movement of the shaft, open cracks in the metal and are the primary causes of failure of rotating parts.

If part of a thin rotating component, for example, a turbine blade, experiences catastrophic failure from a through crack, it can lead to larger imbalances that might destroy entire power systems. The reason torsional vibration is difficult to account for is that it is complicated to apply periodic torsional loads during testing. Today, shafts are designed with analytical tools to optimize lengths and diameters of shafts in order to minimize torsional vibrations.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.