We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Directional Solidification?

By Larry Ray Palmer
Updated May 17, 2024
Our promise to you
About Mechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At About Mechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

"Directional solidification" is a metal casting term. It refers to the process of controlled feeding of the molten metal into a temperature-controlled mold to produce a part that is free of hollow spots, called shrink defects. Directional solidification is also used to refine the metal during the casting process because the impurities found in the molten metal will continue to rise to the surface of the pool, following the path of least resistance as they are pushed up by the solid materials below.

In the directional solidification process, the molten metal at the far end of the mold begins to cool and solidify before the rest of the mold does. As the metal on the bottom of the mold cools, this line of solidification moves steadily upward toward the molten metal feed. By controlling the rate of flow for the molten metal feed and introducing thermal variations in the mold, shrink defects can be eliminated, because the liquid metal will naturally run into these dips and vacant areas.

The process of directional solidification is not to be confused with progressive solidification, also called parallel solidification. Although these processes share some similar traits, in progressive solidification, the cooling and solidifying process begins at the walls of the casting and works its way inward. With directional solidification, the process of solidification begins at the bottom of the casting and works its way to the top.

Parallel solidification in a casting is the underlying cause of defects. As the molten metal cools too quickly in some areas or remains heated for too long in other areas, it creates defects as a result of solidification, thermal expansion and contraction. For example, if molten metal is poured into an L-shaped mold, the metal at the corner of the mold might cool too quickly, causing a bottleneck and trapping an air pocket in the lower leg of the mold. This air pocket creates a hollow spot in the finished metal part, thus weakening the overall structure.

To control parallel solidification and encourage directional solidification in the casting process, several techniques are employed. Thermal variations are introduced into the mold by using risers or chills to control hot or cold spots that might create problems with the cast part. Insulated sleeves also are used to ensure a steady, controlled temperature for the mold. Finally, the rate of flow and temperature of the molten metal feed are carefully controlled to ensure directional solidification.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By Mammmood — On Jan 14, 2012

@nony - A directional solidification system makes sense. The question is, in what environments do they use this process? If you are talking about going down to the local home improvement store, I can understand how you can find the stray metal piece that isn’t developed quite right.

I doubt they use directional solidification of steel castings in this context, because it really doesn’t matter for do it yourself projects.

However, if you’re building pieces that are going to be used in aircraft wings, for the purposes of providing support, I’d bet they are using directional solidification for those parts. I’ve heard of wings falling off (or flaps anyway) because of a defect in a ball bearing or some other metal piece.

By nony — On Jan 13, 2012

One of the most frustrating things to deal with from a craftsman’s perspective is using a piece of metal that has been deformed or hollowed out somehow through improper casting.

It doesn’t matter whether you are talking about L shaped pieces like the one mentioned in the article or ball bearings. Most of the time the pieces are useless and it becomes nearly impossible to hammer them back into proper shape, most especially with stainless steel parts.

Be sure to inspect any metal part you buy from a hardware store. I usually find defects if I am buying whole lots. There is usually a bad apple in the bunch.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.