A power system simulation is a computer-based method of determining if a power system in functioning properly and whether it is cost-efficient to operate. These programs allow users to lay out a power system exactly as it would exist in real life. When the grid is complete, the program is able to simulate what would happen when the real-life version of the grid came online. Designers will use a power system simulation to determine if a setup works as intended and to locate any problems before they are built.
In most cases, this type of simulation focuses on three key areas: short-term viability, long-term expansion and cost management. Each of these key areas may be simulated independently or as a single time-focused study. Each of the three areas is vital to the success of any power system.
A short-term viability simulation focuses on the actual design of the system over all else. These simulations check for situations that may occur in the grid that were not intended. These occurrences may be dangerous, such as short circuits or power backwashes, or benign, like unexpected stops or inefficient pathing. These simulations help to iron out the physical and design problems that may exist in the grid before it is built.
The long-term portion of a power system simulation centers on what will happen as the grid is used. These simulations will point out weak spots that may wear out over time. By using that information, designers can increase the strength of weak points, which will make the grid less expensive to maintain. In addition, these simulations will help to show where the grid may be lacking in the future. If a particular neighborhood is small now, but growing rapidly, the simulation will point that out so designers can beef up areas that may not have enough coverage.
The last main area of a power system simulation is its cost of operation. Power systems are both expensive to build and to maintain. As a result, it is important that the designer makes the system as complete as possible on the first try. This will provide expansion room in the grid and keep the modification costs down.
Along with the cost of building and maintaining the grid, the power system simulation will also address the cost of moving electricity through the system. As power moves across the wires, a small amount is lost. The larger and more complex the system, the more power dissipates. These simulations allow designers to balance cost verses complexity to keep the overall cost on maintaining and operating the system as low as possible.