We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Platinum Resistance Thermometer?

By Christy Bieber
Updated May 17, 2024
Our promise to you
About Mechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At About Mechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A platinum resistance thermometer, most commonly referred to as a PRT, is an electronic device used within a circuit. Its purpose is to evaluate the changes that may occur in the amount of electrical resistance a material may have in instances of extreme temperature. The use of platinum is quickly becoming the standard in resistive thermal devices because of its ability to remain accurate in sensing the temperature in industrial processes that take place at or under 1112 degrees Fahrenheit (600 degrees Celsius).

A platinum resistance thermometer has become one of the most commonly utilized RTDs in industrial applications. A platinum resistance thermometer has also become a standard in resistance thermometers because of its utilization of platinum. The platinum increases its repeatability throughout the circuits the thermometer is used in.

PRTs are available in several different forms. Each of these forms has its own benefits and drawbacks. Carbon resistors, for example, have been used as the standard for some time because of their reliability and availability, as well as their inexpensiveness. With new forms of circuitry becoming the industrial norm, however, carbon resistors may not always be a compatible resource.

Film resistors are an alternative to carbon resistors. Film resistors offer a quick response time and are inexpensive due to the thin film of platinum that is used in conjunction with the substrate layer of the resistor. These two components expand and contract at different rates, however, which can cause inaccuracy and strain on the resistor.

Another reason that platinum is being used as the standard material in resistance thermometers is because of its natural tendency toward chemical inertness. Other materials don’t typically have a significant effect on a resistance thermometer when platinum is used as the resistant material. As such, a platinum resistance thermometer can be used in a wider array of industrial applications. Furthermore, due to the fact that a resistance thermometer relies on temperature variances to provide the different level of resistance needed in the circuit, the accuracy that platinum provides is an advantage.

The limitations that platinum resistance thermometers suffer are found in applications that reach common temperatures that exceed 1200 degrees Fahrenheit (650 degrees Celsius). These extreme temperatures create a possibility for chemical impurities within the platinum, rendering the resistance thermometer inaccurate. Also, when the industrial application that requires the use of a PRT reaches common temperatures of -463 degrees Fahrenheit (-275 degrees Celsius) or less, the chance for inaccuracies with platinum resistance thermometers increases substantially.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Related Articles

Discussion Comments
About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.