We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Cascading Failure?

By Ray Hawk
Updated May 17, 2024
Our promise to you
About Mechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At About Mechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A cascading failure is a condition of interconnected systems when the failure of one part or component can lead to a failure in related areas of the system that propagates itself to the point of an overall systems failure. There are many types of cascading failure events that can occur in natural and man-made systems, from electrical and computer systems to political, economic, and ecological systems. The field of research known as complexity science attempts to define the root causes for such failures so as to build in safeguards that may be able to prevent them in the future.

A common yet hard-to-predict type of cascading failure event is a single point of failure, where one component fails and inexplicably leads to a domino effect, triggering a rapid spread of the condition to other parts of the system. An example of this took place in 1996 in the United States, when a power line in the state of Oregon failed and triggered a massive failure of the electrical grid throughout the western US states and Canada, affecting between 4,000,000 and 10,000,000 customers. When the transmission line failed, it caused the regional electrical grid to break up into separate transmission islands which were not able to handle the increased load, and then also failed, leading to the collapse of the entire system. A similar cascading failure occurred in the mid-western US state of Ohio in 2003, which led to the largest electrical blackout in US history.

Often, a cascading failure involves multiple systems that fail due to the butterfly effect, where a seemingly very small event ripples out to produce a much larger one. An example of this is the crash of a DC-10 aircraft over Paris, France, in 1974, killing everyone on board. A later investigation into the cause of the crash revealed that a cargo bay door had not been fastened properly. The man most directly responsible for this reputedly could not read English and therefore was not able to read the instructions for how to properly fasten the door.

The technical design for the cargo door allowed it to be closed without the latches being fully engaged. As the aircraft climbed to 13,000 feet (3,962 meters), internal pressure caused the door to give way, and the explosive decompression around the door as it blew off damaged hydraulic controls in the area, which caused the pilots to eventually lose complete control of the aircraft. The root cause of such a cascading failure is difficult to determine. It spans the regions of education, governmental policies for the hiring of immigrants, engineering designs for hydraulics and avionics, and informal social support systems within the work environment.

The power grids of high voltage systems are the most notable example of large cascading failure events, but failures in large systems are not rare. From traffic jams to market crashes, or forest fires that start with a single spark, large system crashes are often a direct result of what is known as a Byzantine failure event, where an element of a system fails in an unusual way, often continuing to function and corrupting its environment before it completely shuts down. Such events reveal an underlying condition of all complex systems described by chaos theory, which is that of sensitive dependence. Each part of a system is expected to behave within a certain range of parameters, and, when it strays outside of that range, it can start a chain reaction that alters the behavior of the entire system.

The Kessler syndrome is one example among many where science is trying to get ahead of the curve and predict a cascading failure before it occurs. Based on the theories of Donald Kessler in 1978, a US scientist working for the National Aeronautics and Space Administration (NASA), it charts the effects of the collision of objects in low Earth orbit (LEO). Such collisions over time will fuel an exponential increase in the number of small particles in LEO, known as a debris belt, making trips into space much riskier than before. Over 500,000 pieces of debris in orbit traveling at up to 17,500 miles per hour (28,164 kilometers per hour) are tracked as of 2011 on a continuous basis to avoid future catastrophic collisions. A particle as small as a marble could do irreparable damage to a military or scientific spacecraft upon impact, resulting in possible deaths or political and ecological impacts of unforeseen proportions.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.